Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188966

RESUMEN

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Asunto(s)
Mariposas Diurnas , Filogenia , Animales , Evolución Biológica , Mariposas Diurnas/genética
2.
Mol Phylogenet Evol ; 93: 296-306, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26265256

RESUMEN

We present the first dated higher-level phylogenetic and biogeographic analysis of the butterfly family Riodinidae. This family is distributed worldwide, but more than 90% of the c. 1500 species are found in the Neotropics, while the c. 120 Old World species are concentrated in the Southeast Asian tropics, with minor Afrotropical and Australasian tropical radiations, and few temperate species. Morphologically based higher classification is partly unresolved, with genera incompletely assigned to tribes. Using 3666bp from one mitochondrial and four nuclear markers for each of 23 outgroups and 178 riodinid taxa representing all subfamilies, tribes and subtribes, and 98 out of 145 described genera of riodinids, we estimate that Riodinidae split from Lycaenidae about 96Mya in the mid-Cretaceous and started to diversify about 81Mya. The Riodinidae are monophyletic and originated in the Neotropics, most likely in lowland proto-Amazonia. Neither the subfamily Euselasiinae nor the Nemeobiinae are monophyletic as currently constituted. The enigmatic, monotypic Neotropical genera Styx and Corrachia (most recently treated in Euselasiinae: Corrachiini) are highly supported as derived taxa in the Old World Nemeobiinae, with dispersal most likely occurring across the Beringia land bridge during the Oligocene. Styx and Corrachia, together with all other nemeobiines, are the only exclusively Primulaceae-feeding riodinids. The steadily increasing proliferation of the Neotropical Riodininae subfamily contrasts with the decrease in diversification in the Old World, and may provide insights into factors influencing the diversification rate of this relatively ancient clade of Neotropical insects.


Asunto(s)
Mariposas Diurnas/genética , Animales , Teorema de Bayes , Mariposas Diurnas/clasificación , Genes de Insecto , Especiación Genética , Filogenia , Filogeografía
3.
Mol Ecol Resour ; 9 Suppl s1: 1-26, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-21564960

RESUMEN

Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0-2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding - the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species - was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to 'variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.

4.
Proc Biol Sci ; 272(1580): 2457-66, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16271969

RESUMEN

Tropical lowland areas have often been seen as the centres of terrestrial species proliferation, but recent evidence suggests that young species may be more frequent in montane areas. Several montane speciation modes have been proposed, but their relative frequencies and predominant evolutionary sequence remain unclear because so few biogeographic and phylogenetic studies have tested such questions. I use morphological data to generate a phylogenetic hypothesis for all 11 species of the riodinid butterfly genus Ithomiola (Riodininae: Mesosemiini: Napaeina). These species are shown here to be all strictly geographically and elevationally allo- or parapatrically distributed with respect to their closest relatives in lowland and montane regions throughout the Neotropics. The overwhelming pattern in Ithomiola is of repeated upward parapatric speciation across an elevational gradient, and the genus appears to provide the clearest example to date of vertical montane speciation. All of the young derived species are montane and all of the old basal species are confined to the lowlands, supporting the hypothesis of montane regions largely as 'species pumps' and lowland regions as 'museums'. Possible reasons for the post-speciation maintenance of parapatric ranges in Ithomiola are discussed.


Asunto(s)
Altitud , Mariposas Diurnas/anatomía & histología , Filogenia , Animales , América Central , Femenino , Genitales/anatomía & histología , Masculino , Pigmentación/fisiología , América del Sur , Especificidad de la Especie , Alas de Animales/anatomía & histología
5.
Proc Biol Sci ; 271(1541): 797-801, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15255097

RESUMEN

We describe a new species of extinct riodinid butterfly, Voltinia dramba, from Oligo-Miocene Dominican amber (15-25 Myr ago). This appears to be the first butterfly to be taxonomically described from amber, and the first adult riodinid fossil. The series of five specimens represents probably the best-preserved fossil record for any lepidopteran. The phenomenon of extant Voltinia females ovipositing on arboreal epiphytes probably explains the discovery of multiple female V. dramba specimens in amber. Voltinia dramba appears to be one of many extinct butterfly species on Hispaniola. The northwestern Mexican distribution of the explicitly hypothesized sister species, the extant V. danforthi, supports the hypothesis that V. dramba reached Hispaniola by the 'proto-Greater Antillean arc', dating the divergence of V. dramba and V. danforthi to 40-50 Myr ago. This date is contemporaneous with the oldest known butterfly fossils, and implies a more ancient date of origin for many of the higher-level butterfly taxa than is often conceded.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/clasificación , Fósiles , Filogenia , Ámbar , Animales , Mariposas Diurnas/genética , República Dominicana , Geografía , Especificidad de la Especie , Factores de Tiempo
6.
Evolution ; 56(7): 1489-97, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12206248

RESUMEN

A fully resolved cladogram for 19 species in the Charis cleonus group of riodinid butterflies, which have closely parapatric ranges throughout the Amazon basin, is used to derive an area cladogram for the region. This represents the first comprehensive species-level analysis using insects and results in a hypothesis of Amazonian area relationships that is the most detailed to date. The Charis area cladogram is interpreted as supporting an historical vicariant split between the Guianas and the remainder of the Amazon and then between the upper and lower Amazon. The latter two clades can be further divided into the six most widely recognized areas of endemism and even smaller endemic centers within these, some of which, especially along the Madeira and lower Amazon Rivers, have never been previously hypothesized for butterflies. The overall pattern of historical interrelationships indicated is Guiana + ((Rondjnia + (Pará + Belém)) + (Imeri + (Napo + Inambari))). The area relationships for riodinid butterflies show substantial congruence with those presented from the literature for amphibians, reptiles, birds, primates, rodents, and marsupials, suggesting a common vicariant history for these organisms. A summary area cladogram generated by combining area cladograms for all the aforementioned groups of organisms indicated the pattern of historical interrelationships to be (Guiana + (Rondjnia + (Pará + Belém))) + (Imeri + (Napo + Inambari)). Charis cleonus group species distributions are noticeably larger around the upland periphery of Amazonia and smaller in the central and lower regions. A significant positive correlation between the proportion of range area above 100 m and total range size for each species is used to suggest that past sea-level rises may explain smaller range sizes in low-lying regions and that riverine barriers have been important in shaping the current distribution of C. cleonus group species.


Asunto(s)
Mariposas Diurnas/clasificación , Filogenia , Especificidad de la Especie , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Ecología , Genética de Población , Geografía , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...